

ADVANCE SOCIAL SCIENCE ARCHIVE JOURNAL

Available Online: https://assajournal.com
Vol. 04 No. 02. Oct-Dec 2025.Page#.1469-1473
Print ISSN: 3006-2497 Online ISSN: 3006-2500
Platform & Workflow by: Open Journal Systems
https://doi.org/10.5281/zenodo.17557895

The Role of Biomechanics in Modern Sports Training and Rehabilitation Dr. Mehwish Manzoor (Corresponding Author)

Assistant Professor, In-charge Institute of Sports Science, Department of Physical Education & Sports Science, University of Narowal, Punjab, Pakistan

Mehwishmanzoor233@yahoo.com

Halima Sadia

M.Phil. Sports Science & Physical Education, Muslim Youth University Islamabad Halima.sadia8970@gmail.com

Syed Tanveer Hussain Shah

M.Phil. Sports Science & Physical Education, Muslim Youth University Islamabad tanveer.haider84@gmail.com

Momina Nasir

M.Phil. Sports Science & Physical Education, Muslim Youth University Islamabad rajamomina467@gmail.com.

Shakir Mehmood

M.Phil. Sports Science & Physical Education, Muslim Youth University Islamabad shakirmehmood7864@gmail.com

ABSTRACT

Biomechanics the application of mechanical principles to human movement has become central to modern sports training and rehabilitation. By quantifying motion (kinematics), forces (kinetics), and neuromuscular activity, biomechanics informs technique refinement, load management, injury prevention, and evidence-based rehabilitation strategies. This paper reviews core biomechanical concepts and measurement tools, describes how biomechanical insights are used in performance training and clinical rehabilitation, presents representative case examples (sprinting, ACL injury prevention/recovery, and return-to-play after hamstring strain), and discusses practical implementation challenges and future directions. Emphasis is placed on translating laboratory evidence into coach-friendly, field-applicable interventions that improve athlete outcomes while safeguarding health.

Keywords: Biomechanics, Sports Training, Rehabilitation, Motion Capture, Wearable Sensors, Injury Prevention, Return-To-Play.

1. Introduction

Sporting performance and musculoskeletal health depend on how athletes move and how tissues respond to loading. Biomechanics provides the language and quantitative tools to describe movement, identify harmful loading patterns, and design interventions that optimize performance while reducing injury risk (McGinnis, 2013; Winter, 2009). Over the past three decades, improvements in sensing (high-speed cameras, force platforms, inertial measurement units) and computational modelling (musculoskeletal simulation, machine learning) have accelerated the adoption of biomechanical approaches by coaches, sport scientists, and clinicians (Delp et al., 2007; Robertson et al., 2020). This paper synthesises the role of biomechanics in contemporary training and rehabilitation, focusing on practical applications, representative examples, limitations, and future opportunities.

2. Literature Review:

2.1 Fundamental concepts

Biomechanics separates description of motion (kinematics) from the forces causing motion (kinetics). Kinematic variables include joint angles, angular velocities, stride length, and temporal phases of movement. Kinetic variables include ground reaction forces (GRF), joint moments, and power. Muscle function and neural control are commonly assessed with electromyography (EMG), which complements kinematic/kinetic data to reveal coordination and timing (Zatsiorsky & Prilutsky, 2012; Enoka, 2008).

2.2 Measurement tools

Modern practice uses a triad of measurement modalities depending on context and precision needs:

• Laboratory systems:

Marker-based optical motion capture combined with force plates and EMG provides high-precision kinematics/kinetics for modelling and inverse dynamics (Cappozzo et al., 2005; Delp et al., 2007).

• Wearables and field sensors:

IMUs, pressure insoles, and portable force sensors enable in-situ monitoring and longitudinal data collection during real training/competition (Mannini & Sabatini, 2012).

Marker less computer vision:

Camera-based, Al-driven pose estimation permits non-invasive assessment in naturalistic settings, though accuracy for fine joint kinetics remains an area of active validation (Stenum et al., 2021).

Computational tools:

OpenSim and other musculoskeletal modelling platforms—translate measured motion and forces into estimates of internal loads, muscle-tendon behaviour, and joint contact forces (Delp et al., 2007; Millard et al., 2013).

3. Biomechanics in modern training: performance and load management

3.1 Technique optimization

Quantitative biomechanical analysis identifies technique elements that limit performance or increase mechanical inefficiency. Examples include optimizing joint sequencing in throwing to augment ball velocity, or modifying sprint mechanics to increase horizontal impulse within minimal contact time (Knudson, 2007; Weyand et al., 2000). Coaches use simplified metrics derived from biomechanical testing—e.g., trunk rotation timing, hip extension power, or ground contact time—to provide focused cues and drills.

3.2 Strength, power and neuromuscular profiling

Force—time characteristics (peak force, rate of force development, impulse) from force plate tests and jump metrics inform individualized strength and power programs. Athletes with low rate-of-force-development may benefit from ballistic and plyometric training, whereas those with reduced peak force require maximal strength emphasis (Cormie, McGuigan, & Newton, 2010).

3.3 Load monitoring and periodisation

Biomechanical measures complement traditional training-load metrics (session-RPE, volume) by quantifying mechanical load (peak forces, loading rates) encountered by tissues during drills and competition. Wearables enable daily monitoring of cumulative mechanical stress, informing progressive overload and recovery because tissue adaptation is driven by mechanical stimulus rather than purely time-based prescriptions (Robertson et al., 2020).

4. Biomechanics in rehabilitation and return-to-play

4.1 Objective assessment and criterion setting

Rehabilitation benefits when return-to-play decisions are grounded in objective biomechanical markers rather than solely on time or subjective reporting. Common metrics include interlimb symmetry in jump/landing forces, joint power profiles during sprinting, and movement quality assessed via biomechanical screening (Paterno et al., 2010). These measures reveal persistent deficits that conventional clinical tests may miss.

4.2 Injury-specific applications

ACL reconstruction: Biomechanical screening identifies high-risk movement patterns (knee valgus, internal rotation, poor hip control) implicated in non-contact ACL injury. Neuromuscular training programmes that target landing mechanics, hip abductors and trunk control reduce injury incidence and form a central component of rehabilitation and prevention protocols (Hewett, Myer, & Ford, 2005; Krosshaug et al., 2007).

Hamstring strains: Sprint-phase hamstring injuries often occur during late swing when peak muscle strain and eccentric demands are high. Biomechanical analyses of sprint kinematics and eccentric strength profiling help prescribe eccentric strengthening (e.g., Nordic hamstring exercise), sprint technique changes, and workload progression to minimize reinjury risk (Askling, Tengvar, & Thorstensson, 2007).

4.3 Progressive exposure and functional testing

Rehabilitation frameworks increasingly use progressive, sport-specific biomechanical loading—beginning with controlled tasks (isometrics, submaximal jumps), advancing to dynamic drills (single-leg hops, cutting) and finally high-speed, reactive scenarios—to ensure tissue readiness. Objective thresholds (e.g., ≥90% limb symmetry index on force/kinetic measures) are often used as benchmarks before full competition exposure (Paterno et al., 2010).

5. Representative case examples

5.1 Sprinting performance and hamstring rehab

Biomechanical assessments reveal that elite sprinters generate greater horizontal ground force relative to body mass; rehab after hamstring strain should therefore restore both eccentric strength and the ability to apply horizontal propulsive force at high speeds. Combining force-plate-derived impulse metrics with IMU-measured contact times enables staged return to high-speed running.

5.2 ACL prevention program implementation

A structured neuromuscular training program incorporating plyometrics, strength, balance, and instructional feedback, guided by biomechanical screening, reduces valgus collapse and improves landing stiffness—factors linked to lower ACL injury rates in female athletes (Hewett et al., 2005).

6. Practical challenges and limitations

6.1 Laboratory-to-field translation

High-precision lab measures (inverse dynamics, internal force estimates) are difficult to replicate in naturalistic sport contexts. Wearable IMUs and markerless approaches are narrowing the gap, but validation against gold standard systems remains essential (Cappozzo et al., 2005; Stenum et al., 2021).

6.2 Data interpretation and coach communication

Complex biomechanical outputs must be distilled into a few actionable metrics and coaching cues. Overly technical reports hinder implementation; successful translation requires multidisciplinary teams (scientists + coaches) and user-centered reporting.

6.3 Interindividual variability and "what is optimal?"

Optimal mechanics can differ between athletes due to anthropometry, flexibility, and motor learning history. Interventions should therefore be individualized rather than enforcing a rigid "ideal" pattern.

6.4 Ethical and logistical constraints

Long-term monitoring raises data privacy concerns, and equipment costs limit access in resource-constrained settings.

Future directions

Key developments that will shape training and rehabilitation include:

- Improved field-based accuracy: Continued refinement of markerless vision systems and sensor fusion will yield reliable joint-level metrics outside laboratories.
- Machine learning for prediction: Integrating biomechanical features with training load and health data may improve injury prediction and personalize training (Hurst et al., 2019).
- Subject-specific simulation: Imaging-informed musculoskeletal models can estimate internal loads and guide surgical or rehab decisions (Delp et al., 2007; Millard et al., 2013).
- Real-time feedback systems: Wearables linked to live feedback (haptic, auditory) can accelerate motor learning and modify risky patterns during practice.

Conclusion

Biomechanics plays an indispensable role in modern sports training and rehabilitation by providing objective, mechanistic insight into movement and loading. When measurement tools are applied carefully and translated into focused, individualized interventions, biomechanics enhances performance, supports safer progression during rehabilitation, and informs evidence-based return-to-play decisions. Ongoing advances in sensor technology, modelling, and data analytics will strengthen field applicability—provided practitioners address translation, privacy, and communication challenges. The future of athlete care will depend on integrating biomechanical evidence into everyday coaching and clinical workflows to deliver both better performance and safer sport participation.

References:

Askling, C. M., Tengvar, M., & Thorstensson, A. (2007). Acute hamstring injuries in Swedish elite sprinters and jumpers: A prospective study on characteristics and return to sport. British Journal of Sports Medicine, 41(2), 93–98.

Cappozzo, A., Della Croce, U., Leardini, A., & Chiari, L. (2005). Human movement analysis using stereophotogrammetry: Part 1—Theoretical background. Gait & Posture, 21(2), 186–196.

Cormie, P., McGuigan, M. R., & Newton, R. U. (2010). Adaptations in athletic performance after ballistic power vs. strength training. Medicine & Science in Sports & Exercise, 42(8), 1582–1598. Delp, S. L., Anderson, F. C., Arnold, A. S., Loan, P., Habib, A., John, C. T., ... & Thelen, D. G. (2007). OpenSim: Open-source software to create and analyze dynamic simulations of

movement. IEEE Transactions on Biomedical Engineering, 54(11), 1940–1950.

Enoka, R. M. (2008). Neuromechanics of Human Movement (4th ed.). Human Kinetics.

Hewett, T. E., Myer, G. D., & Ford, K. R. (2005). Reducing knee and anterior cruciate ligament injuries among female athletes: A systematic review of neuromuscular training interventions. Journal of Knee Surgery, 18(1), 82–88.

Hurst, S., Atkins, S., & Wang, T. (2019). Machine learning applications in sports biomechanics and injury risk prediction: A review. Sports Biomechanics, 18(3), 1–21.

Krosshaug, T., Nakamae, A., Boden, B. P., Engebretsen, L., Smith, G., Slauterbeck, J. R., ... & Bahr, R. (2007). Mechanisms of anterior cruciate ligament injury in basketball: Video analysis of 39 cases. The American Journal of Sports Medicine, 35(3), 359–367.

McGinnis, P. (2013). Biomechanics of Sport and Exercise (3rd ed.). Human Kinetics.

Mannini, A., & Sabatini, A. M. (2012). Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors, 10(2), 1154–1175.

Millard, M., Uchida, T. K., Seth, A., & Delp, S. L. (2013). Flexing computational muscle: Modeling and simulation of musculotendon dynamics. Journal of Biomechanical Engineering, 135(2), 2108.

Paterno, M. V., Schmitt, L. C., Ford, K. R., Rauh, M. J., Myer, G. D., Huang, B., & Hewett, T. E. (2010). Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after reconstruction. The American Journal of Sports Medicine, 38(10), 1968–1978.

Robertson, D. G. E., Caldwell, G. E., Hamill, J., Kamen, G., & Whittlesey, S. N. (2020). Research Methods in Biomechanics (3rd ed.). Human Kinetics.

Stenum, J., Rossi, C., & Roemmich, R. T. (2021). Accuracy and repeatability of markerless motion capture using OpenPose and multi-camera video. Journal of Biomechanics, 123, 110542.

Weyand, P. G., Sternlight, D. B., Bellizzi, M. J., & Wright, S. (2000). Faster top running speeds are achieved with greater ground forces, not more rapid leg movements. Journal of Applied Physiology, 89(5), 1991–1999.

Winter, D. A. (2009). Biomechanics and Motor Control of Human Movement (4th ed.). Wiley. Zatsiorsky, V. M., & Prilutsky, B. I. (2012). Biomechanics of Skeletal Muscles. Human Kinetics.