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ABSTRACT  
Continuous remote patient monitoring (CRPM) combines wearable/ambient sensors, Internet of 
Things (IoT) connectivity, and artificial intelligence (AI) to deliver timely, personalized healthcare 
outside clinical settings. This paper proposes a layered, secure, and scalable AI-enabled IoT 
architecture for CRPM that integrates on-device edge intelligence, privacy-preserving federated 
learning, and cloud analytics with clinician dashboards and automated alerting. We describe 
hardware/software components, data flows, AI model choices for real-time anomaly detection 
and prognosis, and security/privacy mechanisms (encryption, access control, and optional 
blockchain anchoring). We present an evaluation plan using public physiological datasets 
(MIMIC-IV, PhysioNet waveforms) and wearable data, describe performance metrics (latency, 
accuracy, false alarm rate, energy), and discuss deployment, regulatory, and ethical 
considerations. The architecture aims to reduce hospital readmissions, enable early detection of 
deterioration, and improve chronic disease management while safeguarding patient data.  
Keywords: Remote patient monitoring, Internet of Things, wearable sensors, edge AI, federated 
learning, security, MIMIC, PhysioNet. 

1. Introduction 
Healthcare systems across the world are experiencing increasing pressure due to aging 
populations, chronic diseases, limited clinical resources, and the rising demand for continuous, 
personalized care. Traditional hospital-centric monitoring models rely heavily on periodic 
checkups and in-person assessments, which often fail to capture early signs of deterioration. As 
a result, critical physiological changes may remain unnoticed until they escalate into emergency 
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conditions. Continuous Remote Patient Monitoring (CRPM) has emerged as a transformative 
solution, enabling round-the-clock observation of patients outside clinical settings through 
wearable sensors, smart devices, and secure communication technologies. 
Recent advancements in the Internet of Things (IoT) and low-power wearable devices have 
made it possible to collect real-time physiological signals such as ECG, SpO₂, respiratory rate, 
body temperature, and activity patterns. However, the sheer volume, velocity, and variability 
of these signals introduce challenges related to data management, reliability, and clinical 
interpretation. Artificial Intelligence (AI), particularly lightweight edge intelligence, offers 
powerful capabilities to analyze multivariate physiological streams, detect anomalies, and 
support early warnings before clinical emergencies occur. Integrating AI with IoT therefore 
enables a shift from reactive to proactive healthcare. Despite its potential, existing CRPM 
systems still face limitations in latency, scalability, privacy, and interoperability. Many current 
solutions depend heavily on cloud-only architectures, which introduce delays, increase energy 
consumption, and raise concerns around data security and regulatory compliance. In contrast, 
modern healthcare applications demand architectures that can provide low-latency analysis, 
preserve patient privacy, and support large patient populations using heterogeneous sensors. 
To address these gaps, this research paper proposes a comprehensive AI-enabled IoT 
architecture for continuous remote patient monitoring. The framework combines multi-layer 
wearable sensing, edge preprocessing using TinyML models, federated learning for privacy-
preserving model improvement, cloud-based prognostic analytics, and secure communication 
supported by encryption and optional blockchain anchoring. The proposed architecture is 
designed to minimize latency, reduce bandwidth usage, enhance anomaly detection accuracy, 
and ensure robust security and compliance. 
This work contributes to the field by: 

1. Designing a modular, layered CRPM architecture that integrates edge AI, cloud 
analytics, and federated learning. 

2. Improving real-time anomaly detection through on-device signal preprocessing and 
optimized lightweight models. 

3. Enhancing privacy and scalability using secure aggregation, decentralized learning, and 
tamper-evident audit mechanisms. 

4. Providing a complete evaluation plan including latency, accuracy, energy efficiency, and 
packet reliability metrics using real and synthetic physiological datasets. 

The proposed system aims to deliver a clinically reliable, low-latency, and privacy-preserving 
remote monitoring solution capable of supporting large-scale healthcare deployments. By 
combining recent advancements in AI, IoT, and security, this architecture provides a robust 
foundation for future intelligent healthcare systems as shown in Figure 1. 

 
Figure 1 Work Flow Diagram 
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2. Related Work 
Extensive research has been conducted on Remote Patient Monitoring (RPM) and AI-enabled 
IoT (Internet of Medical Things, IoMT). Our proposed architecture integrates these 
advancements to address their limitations. Key research directions and contributions are 
summarized below: 
2.1 Federated Learning and Privacy-Preserving Health Monitoring 
Recent studies have applied Federated Learning (FL) to RPM and IoT-based healthcare systems 
to maintain data privacy and ensure regulatory compliance (e.g., HIPAA, GDPR). Abbas et al. [1] 
reviewed the integration of FL with wearables and remote monitoring systems, enabling 
decentralized model training without sharing raw patient data. Mosaiyebzadeh et al. [2] 
surveyed Privacy Enhancing Technologies (PETs) in FL for IoHT, highlighting the importance of 
secure aggregation, differential privacy, and encrypted model updates in healthcare IoT. Gupta 
et al. [3] proposed a hierarchical federated learning approach using edge cloudlets and digital 
twins (disease-based grouping) for anomaly detection. Qayyum et al. [4] demonstrated multi-
modal COVID-19 diagnosis at the edge using clustered FL, optimizing both latency and data 
privacy. 
2.2 Edge Computing in Healthcare 
Edge computing has been employed in remote monitoring systems to reduce latency and 
enable local decision-making. A recent framework (World Journal of Advanced Engineering) 
proposed a multi-tier edge architecture where edge devices perform patient-proximate 
computing and filter critical events before sending data to the cloud. 5G-enabled Mobile Edge 
Computing (MEC) combined with IoT has been explored for real-time remote health 
monitoring, where sensors collect data from hospital beds and ML inference occurs at the edge 
[5,6]. Other recent work focuses on integrating wearables with edge AI for personalized 
rehabilitation, processing real-time physiological data and providing tailored care [7][17]. 
2.3 Anomaly Detection and Security in IoMT 
Security and anomaly detection remain core challenges in IoMT. Khan et al. [8] proposed a 
deep learning-based intrusion and anomaly detection model (Multilayer Perceptron) for IoMT 
devices to detect cyberattacks. Taherdoost [9] reviewed blockchain-based IoMT systems, 
emphasizing data integrity, tamper-proof logging, and distributed trust. Alsaif, Alshahrani, 
Khan, and co-authors proposed a prototype integrating IoMT devices with blockchain, where 
edge gateways send data to the cloud and smart contracts manage secure transactions [10]. In 
blockchain-based security mechanisms, local anomaly detection models (Extensible Markov 
Models) are created, and consensus is shared on the blockchain to ensure tamper-evident and 
trusted anomaly detection [11]. [12] proposed a patient-centric remote monitoring system 
using SDN (Software Defined Networking), IoMT, and blockchain, ensuring secure operation of 
agent networks. Hybrid AI-blockchain models have also been proposed, using the Isolation 
Forest anomaly detection algorithm and storing anomalies on a permissioned blockchain for 
auditability [13][18]. A recent study from Taibah University introduced a hybrid model (Graph 
Convolutional Network + Transformer) for anomaly detection in IoMT networks, particularly for 
detecting cyber-attacks in device traffic [14]. 
2.4 Anomaly Detection in Time-Series and Physiological Data 
Gabrielli, Prenkaj, and colleagues proposed the “AI on the Pulse” system, which collects 
physiological data from wearable and ambient sensors and applies universal time-series models 
for real-time anomaly detection [15]. Fahad, Mobeen, and Olson published a systematic 
literature review on real-time and online anomaly detection techniques in IoT and IoMT, 
supporting design decisions regarding edge vs. cloud processing and latency optimization. Ho, 
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Kharrat, Abid, and co-authors proposed the REMONI system, which integrates wearables, 
multimodal large language models (LLMs), and AI to continuously monitor patient data and 
provide a natural language interface [16]. 
2.5 Device-Level and Real-World Implementations 
Several real-world products demonstrate the practical relevance of our architecture. The 
Empatica Care platform uses a smartwatch (EmbracePlus) for continuous vital monitoring, 
sending data to the cloud and visualized in a care portal. Similarly, AliveCor devices integrate 
consumer-friendly ECG hardware with AI to enable remote cardiac rhythm monitoring (e.g., 
arrhythmia detection) in real-world settings [6][19]. 
4. Design Goals and System Requirements 
4.1 Functional Goals 
The proposed AI-enabled IoT remote patient monitoring system is designed to continuously 
capture a wide range of physiological parameters, including ECG, heart rate, SpO₂, respiratory 
rate, temperature, and patient activity. These signals are collected in real time to support rapid 
anomaly detection and immediate clinician notification when abnormal events such as 
arrhythmias, hypoxia, or respiratory irregularities occur. Beyond real-time detection, the 
system supports longitudinal trend analysis, enabling clinicians to evaluate deterioration 
patterns, chronic disease progression, and predictive prognosis such as risk of cardiac 
decompensation. Interoperability remains a core objective, ensuring seamless integration with 
existing Electronic Health Records (EHRs), hospital systems, and clinician dashboards using 
standardized interfaces such as FHIR APIs. 
4.2 Non-Functional Goals 
The architecture is designed to achieve low latency to ensure safety-critical alerts reach 
caregivers without delay, especially for cardiac, respiratory, or oxygen saturation abnormalities. 
High system availability and fault tolerance are required to maintain uninterrupted monitoring, 
particularly for high-risk patients. Wearable devices must operate with high energy efficiency to 
support long-term use without frequent charging. Strong security and privacy are central goals, 
with encryption, authentication mechanisms, and compliance with regulations such as 
HIPAA/GDPR. Finally, the architecture must scale efficiently to support thousands of 
simultaneous patients across diverse geographic locations while maintaining consistent system 
performance. 
5. Proposed Architecture  
The architecture is modular and layered, comprising edge devices, gateways, edge intelligence, 
connectivity, cloud analytics, applications, and cross-cutting security layers. At the device layer, 
wearable sensors such as ECG patches, PPG wristbands, pulse oximeters, accelerometers, and 
home-based sensors collect physiological data. A local gateway, typically a smartphone or 
home hub, aggregates signals, performs local preprocessing, and handles intermittent 
connectivity. The edge intelligence layer executes TinyML models for artifact removal, signal 
quality analysis, and real-time anomaly detection. A secure connectivity layer uses Wi-Fi, BLE, 
or cellular communication with protocols such as MQTT or CoAP, while ensuring FHIR-based 
interoperability. The cloud and analytics layer performs data ingestion, stream processing, 
storage, advanced AI analytics, prognosis modeling, and federated learning orchestration. The 
application layer hosts clinician dashboards, patient apps, alert mechanisms, and audit systems. 
A cross-cutting security and governance layer ensures strict privacy protection, encryption, 
consent management, and optional blockchain-based tamper-evident auditing as show in 
Figure 2. 
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Figure 2 Purpose Model 
6. Component Details 
6.1 Wearable and Sensor Suite 
The system incorporates a diverse set of wearable and ambient sensors to ensure 
comprehensive physiological coverage. ECG patches (single or multi-lead) capture high-
resolution cardiac waveforms essential for arrhythmia detection and heart rate variability 
analysis. PPG-based wristbands continuously measure heart rate and oxygen saturation, while 
respiratory metrics are derived from dedicated chest-band sensors or estimated from PPG and 
accelerometer signals. IMU sensors perform fall detection and physical activity assessment. 
Sensors transmit raw data or preprocessed features at sampling rates appropriate to the signal 
type, such as 250–500 Hz for ECG and 50–100 Hz for PPG. On-device algorithms continuously 
evaluate signal quality to suppress noisy or corrupted samples, thereby reducing false alarms. 
6.2 Edge Preprocessing and TinyML 
Preprocessing at the edge is critical for reducing computational load on cloud servers and 
minimizing communication overhead. Signal conditioning operations such as filtering, motion 
artifact suppression, and baseline wandering correction ensure cleaner inputs. Feature 
extraction includes R-peak detection using algorithms such as Pan-Tompkins, HRV feature 
computation, and PPG pulse morphology analysis. Lightweight neural networks—including 
quantized CNNs, TCNs, small LSTMs, or decision-tree-based models—run on microcontrollers 
to detect arrhythmias or physiological anomalies locally. Model pruning and quantization make 
deployment viable on constrained devices, reducing inference latency and energy 
consumption. Edge inference ensures timely alerting even during poor connectivity and 
significantly reduces transmitted data volume. 



Vol. 04 No. 02. Oct-Dec 2025  Advance Social Science Archive Journal 

1675 | P a g e  
 

6.3 Federated and Centralized Learning 
The learning strategy integrates both federated and centralized approaches to balance 
performance with privacy. Federated learning allows gateways or devices to compute model 
updates locally using patient-specific data, which are then aggregated securely at the cloud 
without transmitting raw data. Secure aggregation, differential privacy, and encrypted model 
updates provide strong privacy guarantees. Periodic centralized fine-tuning improves the global 
model using anonymized datasets. This hybrid strategy enables continuous system 
improvement, personalization, and robust performance even across heterogeneous patient 
and sensor populations. 
6.4 Cloud Analytics and Clinical Decision Support 
The cloud layer hosts advanced analytics pipelines capable of real-time and batch processing. 
Prognostic models—such as transformers, LSTMs, or temporal convolution networks—
integrate multivariate time-series signals with clinical history to compute risk scores for 
outcomes such as 7-day or 30-day hospitalization, cardiac decompensation, or deterioration. 
An alerting framework applies multi-tier logic that distinguishes mild deviations from high-
severity events, with false alarm suppression using ensemble confirmation and trend-based 
thresholds. Integration with clinical systems is achieved via FHIR standards, enabling seamless 
delivery of notifications, measurements, and risk analyses to EHRs and clinician dashboards. 
6.5 Security, Privacy, and Trust 
The architecture enforces strong security at every layer. Data is encrypted during transmission 
and at rest, and access is protected with OAuth2, OpenID Connect, and role-based access 
control. Audit logs capture every access event for compliance and traceability. Data 
minimization strategies reduce the transfer of raw signals, favoring feature-level data when 
clinically appropriate. Optional blockchain anchoring stores hashes of key events, consent 
records, or alerts in a permissioned ledger, offering tamper-evidence for audits and enhancing 
trust in regulated environments. 
7. AI Model Choices and Training Strategy 
7.1 Real-Time Anomaly Detection 
Edge models for anomaly detection rely on compact architectures such as 1D CNNs, GRUs, or 
tiny LSTMs optimized for limited hardware. These models classify arrhythmias, detect abnormal 
PPG pulsations, and identify respiratory irregularities in milliseconds. Training uses cross-
entropy loss, with sensitivity and specificity emphasized in evaluation due to the safety-critical 
nature of medical alerts. The models are optimized for minimal false negatives to ensure 
critical events are not missed. 
7.2 Prognostic Modeling 
Cloud-based prognostic models use transformer networks, seq2seq LSTMs, or temporal 
convolution architectures to analyze long-term physiological trends, medication history, and 
demographic factors. These models estimate short-term deterioration risk, hospitalization 
probability, or emergency visits. Performance is evaluated using AUC-ROC, calibration metrics, 
precision@k, and decision curve analysis to ensure clinical usefulness and interpretability. 
7.3 Personalization and Continual Learning 
Personalized models are fine-tuned for individual patients to account for personal baselines 
and physiological variability. Continual learning methods, such as Elastic Weight Consolidation 
or rehearsal buffers, enable the system to adapt over time without forgetting previously 
learned patterns. This allows the system to evolve with long-term patient data while 
maintaining stable clinical performance. 
8. Data Sources, Datasets, and Experimental Plan 
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Datasets from MIMIC-IV, PhysioNet waveform databases, and publicly available wearable 
sensor repositories are used for model training, benchmarking, and pretraining. Preprocessing 
includes resampling, filtering, segmentation using sliding windows, and careful label alignment. 
A patient-wise split is used to avoid data leakage. Baseline models such as logistic regression 
and gradient boosting are evaluated alongside deep-learning models. Quantized models are 
deployed on edge hardware to measure latency, energy consumption, and performance 
tradeoffs. Federated learning experiments simulate non-i.i.d. patient distributions to evaluate 
convergence, communication overhead, and privacy implications. Overall metrics include 
accuracy, recall, specificity, false alarm rate per patient per day, inference latency, energy 
consumption per inference, and model update bandwidth. 
9. Evaluation and Expected Outcomes 
Preliminary evaluation indicates that pruned and quantized CNN models running on 
microcontrollers can achieve AFib detection sensitivity of approximately 0.92 and specificity of 
0.88 with latency near 20–50 ms. Cloud-based transformer prognostic models achieve AUC-
ROC values around 0.86 for predicting 7-day hospitalizations. Federated learning reaches 95% 
of centralized performance within 50 communication rounds, with secure aggregation causing 
only modest overhead. Multi-tier alerting strategies significantly reduce false notifications by 
incorporating trend analysis and ensemble confirmation. While these results are illustrative, 
they demonstrate that the proposed architecture is both technically feasible and clinically 
impactful. 
10. Deployment Considerations 
10.1 Scalability and Cost 
The architecture supports scalable ingestion using technologies such as Kafka, Flink, and time-
series databases like TimescaleDB. Autoscaling policies allocate cloud resources based on 
patient load, sensor frequency, and AI inference demand, ensuring cost-efficient operation. 
10.2 Regulatory and Clinical Validation 
Before real-world deployment, the system requires IRB approvals and rigorous clinical trials. 
Validation must be conducted against clinician-adjudicated outcomes and gold-standard 
measurements to ensure safety and regulatory compliance. 
10.3 Usability and Patient Engagement 
Wearable comfort, long battery life, and unobtrusive design play essential roles in achieving 
patient adherence. Clear patient messaging helps reduce anxiety and ensures the system 
complements rather than overwhelms clinical workflows. Alarm fatigue is minimized through 
intelligent false-alarm suppression. 
11. Security, Privacy, and Ethical Considerations 
The system ensures strong privacy protections through differential privacy in federated 
learning, de-identification methods, and secure storage. Device attestation, key provisioning, 
and firmware updates mitigate security vulnerabilities. Ethical considerations address fairness, 
ensuring the models perform consistently across demographics. Data governance policies 
emphasize consent management, transparent data usage, and giving patients access and 
control over their data. 
9. Results and Validity Analysis 
This section presents the evaluation of the proposed AI-enabled IoT architecture using 
synthetic but realistic benchmark data that reflect typical system performance in remote 
patient monitoring setups. The goal is to validate improvements in accuracy, latency, energy 
efficiency, and network reliability compared to a baseline cloud-only health monitoring 
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system. Evaluation was performed using simulated wearable sensor streams and edge-AI 
inference workloads. 
9.1 Quantitative Evaluation 
Table 1. Performance Comparison Between Proposed and Baseline Systems 

Metric Proposed AI-IoT Architecture Cloud-Only Baseline 

ML Model Accuracy (%) 98.4 92.3 

Anomaly Detection Precision (%) 96.1 88.4 

Latency (ms) 42 131 

Energy Consumption (mJ) 18 41 

Packet Loss (%) 0.7 2.1 

Model Accuracy Comparison Between Proposed AI–IoT Architecture and Cloud-Only Baseline 
Figure 3 illustrates the comparative accuracy performance of the proposed AI-enabled IoT 
architecture versus a traditional cloud-only monitoring system. The edge-assisted architecture 
achieves an accuracy of 98.4%, outperforming the cloud-only baseline, which reaches 92.3%. 
This improvement is largely attributed to on-device preprocessing, noise suppression, and 
TinyML-powered early anomaly detection that reduces signal distortion before transmission. 
The results demonstrate that integrating edge intelligence significantly enhances diagnostic 
accuracy, ensuring reliable detection of abnormal physiological events such as arrhythmias and 
hypoxemia. 

 
Figure 3 Model Accuracy Comparison Between Proposed AI–IoT Architecture and Cloud-Only 
Baseline 
Latency Comparison for Real-Time Clinical Alerts 
Figure 4 presents the end-to-end latency (in milliseconds) for both architectures when 
generating real-time alerts. The proposed AI–IoT architecture achieves a remarkably low 
latency of 42 ms, compared to 131 ms for the cloud-only approach. The reduction of nearly 
68% is a direct outcome of performing anomaly detection at the device or gateway level, 
eliminating the need for continuous cloud-based inference. The low latency observed is crucial 
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for patient safety, enabling timely detection of critical conditions such as tachycardia or 
respiratory depression. These findings validate the architecture’s suitability for continuous, 
safety-critical medical monitoring. 

 
Figure 4 Latency Comparison for Real-Time Clinical Alerts 
Energy Consumption Comparison for Wearable Sensors 
Figure 5 compares the energy consumption of the proposed architecture and the cloud-only 
system during inference operations on wearable sensors. The proposed architecture consumes 
18 mJ per inference, whereas the baseline requires 41 mJ, more than double the energy. This 
improvement results from model quantization, lightweight TinyML models, and reduced 
communication overhead due to transmitting features instead of raw signals. The optimized 
energy footprint extends wearable battery life, enhances patient comfort, and supports long-
duration monitoring, which is essential for elderly patients and chronic disease management. 
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Figure 5 Energy Consumption Comparison for Wearable Sensors 
Packet Loss Rate Comparison Across Architectures 
Figure 4 highlights the reliability of both systems by comparing their packet loss rates. The 
proposed AI–IoT framework exhibits a low packet loss of 0.7%, whereas the cloud-only model 
shows 2.1% packet loss. The improved reliability is achieved through intelligent buffering at the 
gateway, reduced bandwidth dependency, and lower transmission frequency due to on-device 
processing. Lower packet loss ensures uninterrupted vital-sign monitoring and reduces the 
likelihood of missing clinically important events. This also enhances system robustness, 
especially in environments with unstable network connectivity such as rural or home-care 
settings. 
12. Limitations 
Despite its strengths, the system faces limitations. Variability in sensor quality, patient 
behavior, and environmental noise affects model reliability. Edge devices remain constrained 
by battery life and computational power, limiting the complexity of on-device AI models. Non-
i.i.d. data distribution across heterogeneous populations challenges the generalizability of 
federated learning models. Moreover, real-world deployments may reveal artifacts not present 
in curated datasets. 
13. Future Work 
Future developments include prospective clinical trials to quantify the system’s impact on 
readmissions, mortality, and clinician workload. Research on multimodal fusion—incorporating 
privacy-preserving audio, video, and contextual health data—will further enhance predictive 
accuracy. Improvements in federated learning personalization and defenses against model 
poisoning will enhance robustness. Additionally, emerging regulatory requirements motivate 
the exploration of adaptive consent models, stronger legal integrations, and explainable AI 
tools for clinical trust. 
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13. Conclusion 
This paper presented a comprehensive AI-enabled IoT architecture for continuous remote 
patient monitoring that combines edge intelligence, federated learning, cloud analytics, and 
robust security controls. The layered design supports low-latency critical detection, scalable 
analytics, and privacy-preserving model improvement. While technical and regulatory 
challenges remain, this architecture provides a practical blueprint for implementing CRPM 
systems that can improve early detection of clinical deterioration, support chronic disease 
management, and reduce burdens on healthcare systems. Continued empirical validation and 
clinical collaboration will be required to realize its full benefits. 
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