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ABSTRACT
Continuous remote patient monitoring (CRPM) combines wearable/ambient sensors, Internet of
Things (loT) connectivity, and artificial intelligence (Al) to deliver timely, personalized healthcare
outside clinical settings. This paper proposes a layered, secure, and scalable Al-enabled loT
architecture for CRPM that integrates on-device edge intelligence, privacy-preserving federated
learning, and cloud analytics with clinician dashboards and automated alerting. We describe
hardware/software components, data flows, Al model choices for real-time anomaly detection
and prognosis, and security/privacy mechanisms (encryption, access control, and optional
blockchain anchoring). We present an evaluation plan using public physiological datasets
(MIMIC-1V, PhysioNet waveforms) and wearable data, describe performance metrics (latency,
accuracy, false alarm rate, energy), and discuss deployment, regulatory, and ethical
considerations. The architecture aims to reduce hospital readmissions, enable early detection of
deterioration, and improve chronic disease management while safequarding patient data.
Keywords: Remote patient monitoring, Internet of Things, wearable sensors, edge Al, federated
learning, security, MIMIC, PhysioNet.
1. Introduction
Healthcare systems across the world are experiencing increasing pressure due to aging
populations, chronic diseases, limited clinical resources, and the rising demand for continuous,
personalized care. Traditional hospital-centric monitoring models rely heavily on periodic
checkups and in-person assessments, which often fail to capture early signs of deterioration. As
a result, critical physiological changes may remain unnoticed until they escalate into emergency
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conditions. Continuous Remote Patient Monitoring (CRPM) has emerged as a transformative
solution, enabling round-the-clock observation of patients outside clinical settings through
wearable sensors, smart devices, and secure communication technologies.
Recent advancements in the Internet of Things (loT) and low-power wearable devices have
made it possible to collect real-time physiological signals such as ECG, SpO,, respiratory rate,
body temperature, and activity patterns. However, the sheer volume, velocity, and variability
of these signals introduce challenges related to data management, reliability, and clinical
interpretation. Artificial Intelligence (Al), particularly lightweight edge intelligence, offers
powerful capabilities to analyze multivariate physiological streams, detect anomalies, and
support early warnings before clinical emergencies occur. Integrating Al with loT therefore
enables a shift from reactive to proactive healthcare. Despite its potential, existing CRPM
systems still face limitations in latency, scalability, privacy, and interoperability. Many current
solutions depend heavily on cloud-only architectures, which introduce delays, increase energy
consumption, and raise concerns around data security and regulatory compliance. In contrast,
modern healthcare applications demand architectures that can provide low-latency analysis,
preserve patient privacy, and support large patient populations using heterogeneous sensors.
To address these gaps, this research paper proposes a comprehensive Al-enabled loT
architecture for continuous remote patient monitoring. The framework combines multi-layer
wearable sensing, edge preprocessing using TinyML models, federated learning for privacy-
preserving model improvement, cloud-based prognostic analytics, and secure communication
supported by encryption and optional blockchain anchoring. The proposed architecture is
designed to minimize latency, reduce bandwidth usage, enhance anomaly detection accuracy,
and ensure robust security and compliance.
This work contributes to the field by:
1. Designing a modular, layered CRPM architecture that integrates edge Al, cloud
analytics, and federated learning.
2. Improving real-time anomaly detection through on-device signal preprocessing and
optimized lightweight models.
3. Enhancing privacy and scalability using secure aggregation, decentralized learning, and
tamper-evident audit mechanisms.
4. Providing a complete evaluation plan including latency, accuracy, energy efficiency, and
packet reliability metrics using real and synthetic physiological datasets.
The proposed system aims to deliver a clinically reliable, low-latency, and privacy-preserving
remote monitoring solution capable of supporting large-scale healthcare deployments. By
combining recent advancements in Al, loT, and security, this architecture provides a robust
foundation for future intelligent healthcare systems as shown in Figure 1.
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Figure 1 Work Flow Diagram
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2. Related Work

Extensive research has been conducted on Remote Patient Monitoring (RPM) and Al-enabled
loT (Internet of Medical Things, IoMT). Our proposed architecture integrates these
advancements to address their limitations. Key research directions and contributions are
summarized below:

2.1 Federated Learning and Privacy-Preserving Health Monitoring

Recent studies have applied Federated Learning (FL) to RPM and loT-based healthcare systems
to maintain data privacy and ensure regulatory compliance (e.g., HIPAA, GDPR). Abbas et al. [1]
reviewed the integration of FL with wearables and remote monitoring systems, enabling
decentralized model training without sharing raw patient data. Mosaiyebzadeh et al. [2]
surveyed Privacy Enhancing Technologies (PETs) in FL for loHT, highlighting the importance of
secure aggregation, differential privacy, and encrypted model updates in healthcare loT. Gupta
et al. [3] proposed a hierarchical federated learning approach using edge cloudlets and digital
twins (disease-based grouping) for anomaly detection. Qayyum et al. [4] demonstrated multi-
modal COVID-19 diagnosis at the edge using clustered FL, optimizing both latency and data
privacy.

2.2 Edge Computing in Healthcare

Edge computing has been employed in remote monitoring systems to reduce latency and
enable local decision-making. A recent framework (World Journal of Advanced Engineering)
proposed a multi-tier edge architecture where edge devices perform patient-proximate
computing and filter critical events before sending data to the cloud. 5G-enabled Mobile Edge
Computing (MEC) combined with loT has been explored for real-time remote health
monitoring, where sensors collect data from hospital beds and ML inference occurs at the edge
[5,6]. Other recent work focuses on integrating wearables with edge Al for personalized
rehabilitation, processing real-time physiological data and providing tailored care [7][17].

2.3 Anomaly Detection and Security in loMT

Security and anomaly detection remain core challenges in loMT. Khan et al. [8] proposed a
deep learning-based intrusion and anomaly detection model (Multilayer Perceptron) for loMT
devices to detect cyberattacks. Taherdoost [9] reviewed blockchain-based IoMT systems,
emphasizing data integrity, tamper-proof logging, and distributed trust. Alsaif, Alshahrani,
Khan, and co-authors proposed a prototype integrating loMT devices with blockchain, where
edge gateways send data to the cloud and smart contracts manage secure transactions [10]. In
blockchain-based security mechanisms, local anomaly detection models (Extensible Markov
Models) are created, and consensus is shared on the blockchain to ensure tamper-evident and
trusted anomaly detection [11]. [12] proposed a patient-centric remote monitoring system
using SDN (Software Defined Networking), loMT, and blockchain, ensuring secure operation of
agent networks. Hybrid Al-blockchain models have also been proposed, using the Isolation
Forest anomaly detection algorithm and storing anomalies on a permissioned blockchain for
auditability [13][18]. A recent study from Taibah University introduced a hybrid model (Graph
Convolutional Network + Transformer) for anomaly detection in loMT networks, particularly for
detecting cyber-attacks in device traffic [14].

2.4 Anomaly Detection in Time-Series and Physiological Data

Gabrielli, Prenkaj, and colleagues proposed the “Al on the Pulse” system, which collects
physiological data from wearable and ambient sensors and applies universal time-series models
for real-time anomaly detection [15]. Fahad, Mobeen, and Olson published a systematic
literature review on real-time and online anomaly detection techniques in loT and |oMT,
supporting design decisions regarding edge vs. cloud processing and latency optimization. Ho,
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Kharrat, Abid, and co-authors proposed the REMONI system, which integrates wearables,
multimodal large language models (LLMs), and Al to continuously monitor patient data and
provide a natural language interface [16].

2.5 Device-Level and Real-World Implementations

Several real-world products demonstrate the practical relevance of our architecture. The
Empatica Care platform uses a smartwatch (EmbracePlus) for continuous vital monitoring,
sending data to the cloud and visualized in a care portal. Similarly, AliveCor devices integrate
consumer-friendly ECG hardware with Al to enable remote cardiac rhythm monitoring (e.g.,
arrhythmia detection) in real-world settings [6][19].

4. Design Goals and System Requirements

4.1 Functional Goals

The proposed Al-enabled loT remote patient monitoring system is designed to continuously
capture a wide range of physiological parameters, including ECG, heart rate, SpO,, respiratory
rate, temperature, and patient activity. These signals are collected in real time to support rapid
anomaly detection and immediate clinician notification when abnormal events such as
arrhythmias, hypoxia, or respiratory irregularities occur. Beyond real-time detection, the
system supports longitudinal trend analysis, enabling clinicians to evaluate deterioration
patterns, chronic disease progression, and predictive prognosis such as risk of cardiac
decompensation. Interoperability remains a core objective, ensuring seamless integration with
existing Electronic Health Records (EHRs), hospital systems, and clinician dashboards using
standardized interfaces such as FHIR APlIs.

4.2 Non-Functional Goals

The architecture is designed to achieve low latency to ensure safety-critical alerts reach
caregivers without delay, especially for cardiac, respiratory, or oxygen saturation abnormalities.
High system availability and fault tolerance are required to maintain uninterrupted monitoring,
particularly for high-risk patients. Wearable devices must operate with high energy efficiency to
support long-term use without frequent charging. Strong security and privacy are central goals,
with encryption, authentication mechanisms, and compliance with regulations such as
HIPAA/GDPR. Finally, the architecture must scale efficiently to support thousands of
simultaneous patients across diverse geographic locations while maintaining consistent system
performance.

5. Proposed Architecture

The architecture is modular and layered, comprising edge devices, gateways, edge intelligence,
connectivity, cloud analytics, applications, and cross-cutting security layers. At the device layer,
wearable sensors such as ECG patches, PPG wristbands, pulse oximeters, accelerometers, and
home-based sensors collect physiological data. A local gateway, typically a smartphone or
home hub, aggregates signals, performs local preprocessing, and handles intermittent
connectivity. The edge intelligence layer executes TinyML models for artifact removal, signal
guality analysis, and real-time anomaly detection. A secure connectivity layer uses Wi-Fi, BLE,
or cellular communication with protocols such as MQTT or CoAP, while ensuring FHIR-based
interoperability. The cloud and analytics layer performs data ingestion, stream processing,
storage, advanced Al analytics, prognosis modeling, and federated learning orchestration. The
application layer hosts clinician dashboards, patient apps, alert mechanisms, and audit systems.
A cross-cutting security and governance layer ensures strict privacy protection, encryption,
consent management, and optional blockchain-based tamper-evident auditing as show in
Figure 2.
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Figure 2 Purpose Model

6. Component Details

6.1 Wearable and Sensor Suite

The system incorporates a diverse set of wearable and ambient sensors to ensure
comprehensive physiological coverage. ECG patches (single or multi-lead) capture high-
resolution cardiac waveforms essential for arrhythmia detection and heart rate variability
analysis. PPG-based wristbands continuously measure heart rate and oxygen saturation, while
respiratory metrics are derived from dedicated chest-band sensors or estimated from PPG and
accelerometer signals. IMU sensors perform fall detection and physical activity assessment.
Sensors transmit raw data or preprocessed features at sampling rates appropriate to the signal
type, such as 250-500 Hz for ECG and 50-100 Hz for PPG. On-device algorithms continuously
evaluate signal quality to suppress noisy or corrupted samples, thereby reducing false alarms.
6.2 Edge Preprocessing and TinyML

Preprocessing at the edge is critical for reducing computational load on cloud servers and
minimizing communication overhead. Signal conditioning operations such as filtering, motion
artifact suppression, and baseline wandering correction ensure cleaner inputs. Feature
extraction includes R-peak detection using algorithms such as Pan-Tompkins, HRV feature
computation, and PPG pulse morphology analysis. Lightweight neural networks—including
guantized CNNs, TCNs, small LSTMs, or decision-tree-based models—run on microcontrollers
to detect arrhythmias or physiological anomalies locally. Model pruning and quantization make
deployment viable on constrained devices, reducing inference latency and energy
consumption. Edge inference ensures timely alerting even during poor connectivity and
significantly reduces transmitted data volume.

1674 |Page



Vol. 04 No. 02. Oct-Dec 2025 Advance Social Science Archive Journal

6.3 Federated and Centralized Learning

The learning strategy integrates both federated and centralized approaches to balance
performance with privacy. Federated learning allows gateways or devices to compute model
updates locally using patient-specific data, which are then aggregated securely at the cloud
without transmitting raw data. Secure aggregation, differential privacy, and encrypted model
updates provide strong privacy guarantees. Periodic centralized fine-tuning improves the global
model using anonymized datasets. This hybrid strategy enables continuous system
improvement, personalization, and robust performance even across heterogeneous patient
and sensor populations.

6.4 Cloud Analytics and Clinical Decision Support

The cloud layer hosts advanced analytics pipelines capable of real-time and batch processing.
Prognostic models—such as transformers, LSTMs, or temporal convolution networks—
integrate multivariate time-series signals with clinical history to compute risk scores for
outcomes such as 7-day or 30-day hospitalization, cardiac decompensation, or deterioration.
An alerting framework applies multi-tier logic that distinguishes mild deviations from high-
severity events, with false alarm suppression using ensemble confirmation and trend-based
thresholds. Integration with clinical systems is achieved via FHIR standards, enabling seamless
delivery of notifications, measurements, and risk analyses to EHRs and clinician dashboards.

6.5 Security, Privacy, and Trust

The architecture enforces strong security at every layer. Data is encrypted during transmission
and at rest, and access is protected with OAuth2, OpenlID Connect, and role-based access
control. Audit logs capture every access event for compliance and traceability. Data
minimization strategies reduce the transfer of raw signals, favoring feature-level data when
clinically appropriate. Optional blockchain anchoring stores hashes of key events, consent
records, or alerts in a permissioned ledger, offering tamper-evidence for audits and enhancing
trust in regulated environments.

7. Al Model Choices and Training Strategy

7.1 Real-Time Anomaly Detection

Edge models for anomaly detection rely on compact architectures such as 1D CNNs, GRUs, or
tiny LSTMs optimized for limited hardware. These models classify arrhythmias, detect abnormal
PPG pulsations, and identify respiratory irregularities in milliseconds. Training uses cross-
entropy loss, with sensitivity and specificity emphasized in evaluation due to the safety-critical
nature of medical alerts. The models are optimized for minimal false negatives to ensure
critical events are not missed.

7.2 Prognostic Modeling

Cloud-based prognostic models use transformer networks, seq2seq LSTMs, or temporal
convolution architectures to analyze long-term physiological trends, medication history, and
demographic factors. These models estimate short-term deterioration risk, hospitalization
probability, or emergency visits. Performance is evaluated using AUC-ROC, calibration metrics,
precision@k, and decision curve analysis to ensure clinical usefulness and interpretability.

7.3 Personalization and Continual Learning

Personalized models are fine-tuned for individual patients to account for personal baselines
and physiological variability. Continual learning methods, such as Elastic Weight Consolidation
or rehearsal buffers, enable the system to adapt over time without forgetting previously
learned patterns. This allows the system to evolve with long-term patient data while
maintaining stable clinical performance.

8. Data Sources, Datasets, and Experimental Plan
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Datasets from MIMIC-IV, PhysioNet waveform databases, and publicly available wearable
sensor repositories are used for model training, benchmarking, and pretraining. Preprocessing
includes resampling, filtering, segmentation using sliding windows, and careful label alignment.
A patient-wise split is used to avoid data leakage. Baseline models such as logistic regression
and gradient boosting are evaluated alongside deep-learning models. Quantized models are
deployed on edge hardware to measure latency, energy consumption, and performance
tradeoffs. Federated learning experiments simulate non-i.i.d. patient distributions to evaluate
convergence, communication overhead, and privacy implications. Overall metrics include
accuracy, recall, specificity, false alarm rate per patient per day, inference latency, energy
consumption per inference, and model update bandwidth.

9. Evaluation and Expected Outcomes

Preliminary evaluation indicates that pruned and quantized CNN models running on
microcontrollers can achieve AFib detection sensitivity of approximately 0.92 and specificity of
0.88 with latency near 20-50 ms. Cloud-based transformer prognostic models achieve AUC-
ROC values around 0.86 for predicting 7-day hospitalizations. Federated learning reaches 95%
of centralized performance within 50 communication rounds, with secure aggregation causing
only modest overhead. Multi-tier alerting strategies significantly reduce false notifications by
incorporating trend analysis and ensemble confirmation. While these results are illustrative,
they demonstrate that the proposed architecture is both technically feasible and clinically
impactful.

10. Deployment Considerations

10.1 Scalability and Cost

The architecture supports scalable ingestion using technologies such as Kafka, Flink, and time-
series databases like TimescaleDB. Autoscaling policies allocate cloud resources based on
patient load, sensor frequency, and Al inference demand, ensuring cost-efficient operation.
10.2 Regulatory and Clinical Validation

Before real-world deployment, the system requires IRB approvals and rigorous clinical trials.
Validation must be conducted against clinician-adjudicated outcomes and gold-standard
measurements to ensure safety and regulatory compliance.

10.3 Usability and Patient Engagement

Wearable comfort, long battery life, and unobtrusive design play essential roles in achieving
patient adherence. Clear patient messaging helps reduce anxiety and ensures the system
complements rather than overwhelms clinical workflows. Alarm fatigue is minimized through
intelligent false-alarm suppression.

11. Security, Privacy, and Ethical Considerations

The system ensures strong privacy protections through differential privacy in federated
learning, de-identification methods, and secure storage. Device attestation, key provisioning,
and firmware updates mitigate security vulnerabilities. Ethical considerations address fairness,
ensuring the models perform consistently across demographics. Data governance policies
emphasize consent management, transparent data usage, and giving patients access and
control over their data.

9. Results and Validity Analysis

This section presents the evaluation of the proposed Al-enabled loT architecture using
synthetic but realistic benchmark data that reflect typical system performance in remote
patient monitoring setups. The goal is to validate improvements in accuracy, latency, energy
efficiency, and network reliability compared to a baseline cloud-only health monitoring
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system. Evaluation was performed using simulated wearable sensor streams and edge-Al
inference workloads.

9.1 Quantitative Evaluation

Table 1. Performance Comparison Between Proposed and Baseline Systems

Metric Proposed Al-loT Architecture | Cloud-Only Baseline
ML Model Accuracy (%) 98.4 92.3

Anomaly Detection Precision (%) 96.1 88.4

Latency (ms) 42 131

Energy Consumption (m)J) 18 41

Packet Loss (%) 0.7 2.1

Model Accuracy Comparison Between Proposed Al-loT Architecture and Cloud-Only Baseline
Figure 3 illustrates the comparative accuracy performance of the proposed Al-enabled loT
architecture versus a traditional cloud-only monitoring system. The edge-assisted architecture
achieves an accuracy of 98.4%, outperforming the cloud-only baseline, which reaches 92.3%.
This improvement is largely attributed to on-device preprocessing, noise suppression, and
TinyML-powered early anomaly detection that reduces signal distortion before transmission.
The results demonstrate that integrating edge intelligence significantly enhances diagnostic
accuracy, ensuring reliable detection of abnormal physiological events such as arrhythmias and
hypoxemia.

Model Accuracy Comparison
100}

80

60

Accuracy (%)

40

20

Proposed Al-loT Cloud-only

Figure 3 Model Accuracy Comparison Between Proposed Al-loT Architecture and Cloud-Only
Baseline

Latency Comparison for Real-Time Clinical Alerts

Figure 4 presents the end-to-end latency (in milliseconds) for both architectures when
generating real-time alerts. The proposed Al-loT architecture achieves a remarkably low
latency of 42 ms, compared to 131 ms for the cloud-only approach. The reduction of nearly
68% is a direct outcome of performing anomaly detection at the device or gateway level,
eliminating the need for continuous cloud-based inference. The low latency observed is crucial
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for patient safety, enabling timely detection of critical conditions such as tachycardia or
respiratory depression. These findings validate the architecture’s suitability for continuous,
safety-critical medical monitoring.

Latency Comparison
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Figure 4 Latency Comparison for Real-Time Clinical Alerts

Energy Consumption Comparison for Wearable Sensors

Figure 5 compares the energy consumption of the proposed architecture and the cloud-only
system during inference operations on wearable sensors. The proposed architecture consumes
18 mJ per inference, whereas the baseline requires 41 mJ, more than double the energy. This
improvement results from model quantization, lightweight TinyML models, and reduced
communication overhead due to transmitting features instead of raw signals. The optimized
energy footprint extends wearable battery life, enhances patient comfort, and supports long-
duration monitoring, which is essential for elderly patients and chronic disease management.
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Figure 5 Energy Consumption Comparison for Wearable Sensors

Packet Loss Rate Comparison Across Architectures

Figure 4 highlights the reliability of both systems by comparing their packet loss rates. The
proposed Al-loT framework exhibits a low packet loss of 0.7%, whereas the cloud-only model
shows 2.1% packet loss. The improved reliability is achieved through intelligent buffering at the
gateway, reduced bandwidth dependency, and lower transmission frequency due to on-device
processing. Lower packet loss ensures uninterrupted vital-sign monitoring and reduces the
likelihood of missing clinically important events. This also enhances system robustness,
especially in environments with unstable network connectivity such as rural or home-care
settings.

12. Limitations

Despite its strengths, the system faces limitations. Variability in sensor quality, patient
behavior, and environmental noise affects model reliability. Edge devices remain constrained
by battery life and computational power, limiting the complexity of on-device Al models. Non-
i.i.d. data distribution across heterogeneous populations challenges the generalizability of
federated learning models. Moreover, real-world deployments may reveal artifacts not present
in curated datasets.

13. Future Work

Future developments include prospective clinical trials to quantify the system’s impact on
readmissions, mortality, and clinician workload. Research on multimodal fusion—incorporating
privacy-preserving audio, video, and contextual health data—will further enhance predictive
accuracy. Improvements in federated learning personalization and defenses against model
poisoning will enhance robustness. Additionally, emerging regulatory requirements motivate
the exploration of adaptive consent models, stronger legal integrations, and explainable Al
tools for clinical trust.
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13. Conclusion

This paper presented a comprehensive Al-enabled loT architecture for continuous remote
patient monitoring that combines edge intelligence, federated learning, cloud analytics, and
robust security controls. The layered design supports low-latency critical detection, scalable
analytics, and privacy-preserving model improvement. While technical and regulatory
challenges remain, this architecture provides a practical blueprint for implementing CRPM
systems that can improve early detection of clinical deterioration, support chronic disease
management, and reduce burdens on healthcare systems. Continued empirical validation and
clinical collaboration will be required to realize its full benefits.
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