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ABSTRACT  
This study addresses the complex task of modelling and forecasting the realized variances of wind 
data, with a specific focus on realized volatility across six key atmospheric parameters: wind 
speed at 30 meters, wind speed at 80 meters, temperature, wind direction, relative humidity, and 
pressure. Motivated by the global transition toward renewable energy and the need for accurate 
forecasting tools, this research aims to estimate and to compare the performances of the 
Heterogeneous Autoregressive (HAR) and Autoregressive Fractionally Integrated Moving 
Average (ARFIMA) models through in-sample evaluation metrics and to assess the forecasting 
accuracy of these models through out-of-sample performance. Exploratory analysis revealed long 
memory behaviour, justifying the use of HAR-RV and ARFIMA models, which were applied to a 
realized variance series constructed from 2019–2024 data sets. Stationarity and volatility tests 
confirmed the suitability of both models, with optimal lag structures determined via AIC, BIC, 
HQC, and log-likelihood values. Forecasts were generated using a rolling window technique and 
the adequacy of these forecasts was evaluated on standard error metrics such as MSE, RMSE, 
and MAE. The results showed the superior forecasting capability of the HAR-RV model over the 
contrasting ARFIMA model. A final 72-hour ahead forecast reinforced HAR-RV's robustness and 
predictive strength. These findings suggest that HAR-RV modelling is more effective in capturing 
the dynamics of realized variances, offering valuable insights for operational forecasting and 
renewable energy integration. 
Keywords: Comparing Forecasting Performance, Realized Variances, HAR-RV, ARFIMA, Wind 
Speed, Wind Direction, Temperature, Pressure, Relative Humidity. 
Introduction 
The global shift towardrenewable energy has become an imperative to mitigate climate change 
and achieve sustainable development goals. Among the various renewable energy sources 
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[1,10,24] wind energy stands out as a crucial component of sustainable power generation, 
offering a scalable and meteorologically friendly alternative to fossil fuels. However, the inherent 
variability and stochastic nature of wind present significant challenges for the efficient 
integration of wind power into electrical grids. Accurate forecasting of wind behaviour is 
essential for optimizing energy production, ensuring grid stability, and minimizing operational 
costs. Traditional forecasting models often struggle to capture the complex interplay of 
meteorological factors that govern wind dynamics. These factors exhibit nonlinear relationships, 
temporal dependencies, and long-range correlations, necessitating advanced modelling 
techniques to address these intricacies. 
Wind energy’s sensitivity to rapidly changing meteorological conditions underscores the need 
for precise predictions of its driving variables. Various meteorological and atmospheric 
conditions influence power generation efficiency, wind patterns, and turbine alignment 
strategies. Conventional forecasting approaches, which often rely on simplistic assumptions, fail 
to account for the synergistic effects of these factors. Consequently, advancements in time series 
forecasting have emerged as vital tools to enhance predictive accuracy and support data-driven 
decision-making in renewable energy systems. 
This study aims to address these gaps by applying two advanced statistical frameworks: the 
Heterogeneous Autoregressive-Realized Variance (hereinafter referred as HAR-RV) model and 
the Autoregressive Fractionally Integrated Moving Average (hereinafter referred as ARFIMA) 
model [11]. The HAR-RV model is particularly renowned for its ability to capture multi-scale 
dynamics and volatility clustering inherent in wind data. By decomposing the time series into 
components at different time horizons [19] the HAR-RV model efficiently captures both short-
term fluctuations and long-term trends. Its hierarchical structure allows the model to integrate 
information from various time scales, making it adaptable at reflecting abrupt changes as well as 
persistent patterns. This adaptability is especially beneficial in forecasting wind behaviour, where 
sudden gusts and gradual shifts coexist, and it offers computational efficiency suitable for real-
time applications. 
In contrast, the ARFIMA model enhances traditional ARIMA methodologies by incorporating 
fractional differencing, a feature that allows it to model long-memory phenomenon and 
persistent correlations with greater precision [18]. Unlike standard ARIMA models that assume 
only short-term dependencies, ARFIMA is designed to handle non-stationary time series data 
where past observations exert a lasting influence over extended periods. This capability is crucial 
for modelling meteorological conditions that often exhibit seasonal trends and fractional 
integration properties. ARFIMA's flexibility in adjusting to varying degrees of persistence makes 
it a powerful tool for capturing the long-range dependencies characteristic of meteorological 
datasets. 
By forecasting and comparing the performance of these models across all critical meteorological 
parameters, this research provides a comprehensive understanding of their capabilities in 
simulating wind energy dynamics. The detailed analysis not only highlights the theoretical 
underpinnings of the HAR-RV and ARFIMA models but also demonstrates their practical 
applicability in addressing the complex forecasting challenges in wind energy generation. The 
findings from this study are expected to contribute to improved energy planning and grid 
management strategies, ultimately supporting the integration of renewable energy systems into 
modern power networks. 
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High-frequency data presents unique challenges to empirical research. Statistically, a higher 
number of observations provide greater degrees of freedom, allowing for more precise 
estimators; however, it also introduces complexities such as model dimensionality and positive 
semi-definiteness in covariance matrices [6]. Addressing these challenges requires advanced 
statistical techniques capable of handling the intricate structure of high-frequency datasets, as 
well as innovative models that accommodate the nuances of high-dimensional time series data. 
This research specifically focuses on modelling and forecasting time-varying realized variances 
(also known as “realized volatility”) for meteorological data, with a particular emphasis on wind 
data collected from the Jhimpir Wind Power Plant, located in the Thatta District of Sindh, 
Pakistan. This power plant is a major renewable energy project in Pakistan. Wind energy is a 
rapidly growing renewable resource that plays a critical role in addressing Pakistan’s energy 
shortage and reducing reliance on fossil fuels. In addition to meeting the growing demand for 
sustainable energy, wind power aligns with Pakistan’s strategic goals of attracting foreign 
investment in renewable technologies [12]. By leveraging econometric models on high-
frequency meteorological data, this study contributes to the field of renewable energy by 
enhancing forecasting accuracy and providing actionable insights for energy planning and policy. 
Through sophisticated analysis of wind power data, this research supports the sustainable 
development of energy resources in Pakistan and offers a methodological framework for high-
frequency meteorological data modelling in general.  
1.1   Objectives 
The following research objectives were achieved during the present study. 

1. To estimate and compare both the HAR-RV and ARFIMA models using meteorological 
data. 

2. To identify the best model through different in-sample evaluation strategies. 
3. To forecast the realized variances from the selected model. 

 1.2   Significance of the Study 
This study addresses the complex task of modelling and forecasting high-frequency 
meteorological data, with a specific focus on realized volatility across six key wind parameters. 
While global interest in renewable energy continues to grow, there remains a research gap in 
evaluating the forecasting capabilities of advanced univariate econometric models—specifically 
the HAR-RV and ARFIMA frameworks. High-frequency wind data, characterized by irregular daily 
observations and non-uniform time intervals [18] presents challenges such as nonlinearity, 
temporal dependence, and long-memory behaviour—features that traditional models often fail 
to capture effectively. To address this problem, the present study systematically compares the 
forecasting accuracy of HAR-RV and ARFIMA models over multiple time horizons (h = 1 to 10), 
employing robust evaluation techniques such as the rolling window method [19]. The findings 
are expected to provide significant value to researchers, renewable energy producers, and 
financial investors by improving volatility forecasting accuracy which will ultimately support 
optimized energy production, enhanced grid management, and better risk management 
strategies. Moreover, by aligning with Pakistan’s strategic vision to boost renewable energy 
development and attract foreign investment in green technologies [1] the study contributes to 
national efforts in climate resilience and sustainable growth. 
Literature Review 
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In this section the more related and update review of literature is presented while dividing this 
section into four sub-sections. First sub-section particularly focuses on current scenario of 
renewable energy in Sindh province of Pakistan. The second sub-section describes the potential 
of wind energy with respect to different geographical and meteorological factors whereas the 
third and fourth sub-sections are showing the challenges and barriers of wind energy in Sindh 
Province and the applications of ARFIMA and HAR-RV models in the fields of Renewable Energy, 
respectively. 
Current landscape of wind energy in Sindh (2022-2025) 
The installed wind power capacity in Sindh, Pakistan has witnessed substantial growth, reaching 
approximately 1841 MW [8] to 1845 MW [12,16] by 2022. This expansion highlights a positive 
trend in harnessing the region's significant wind resources. This growth is a reflection of the 
government's commitment to increasing the share of renewable energy in the national grid and 
the active participation of the private sector in developing wind energy projects. 
A considerable number of wind power projects are currently operational in Sindh, primarily 
concentrated within the Jhimpir and Gharo-Keti Bandar Wind Corridor. These projects vary in 
installed capacity and have been commissioned over the years. The operational wind energy 
projects in Sindh between 2022 and 2025 include projects like FFC Energy Limited (49.5 MW, 
commissioned 2013), Zorlu Enerji Pakistan Limited (56.4 MW, commissioned 2013), Three 
Gorges First Wind Farm Pakistan Private Limited (49.5 MW, commissioned 2014), Foundation 
Wind Energy –I Limited (50 MW, commissioned 2015), and Sapphire Wind Power Company 
Limited (52.8 MW, commissioned 2015), among many others [16]. The commissioning dates 
range from 2013 to 2022, showcasing a decade of active development in the wind energy sector 
of Sindh. 
While a significant wind power capacity is already operational, ongoing efforts continue to 
expand wind energy generation in Sindh. Several new projects have been commissioned or are 
under construction within the 2022-2025 timeframe. For instance, the Metro Wind Power 
project (with a capacity of 60 MW) was commissioned in June 2022, Indus Wind Energy Ltd (50 
MW) and Liberty Wind Power 2 Pvt. Ltd (50 MW) were commissioned in March and May 2022, 
respectively [16]. Planned projects such as the Sindh Wind Farm-Oracle Power with a substantial 
capacity of 500 MW are expected to be commissioned by 2025 [15]. These activities indicate 
continued investment and a positive outlook for the growth of wind energy in the region. 
Wind Energy Potential in Sindh: Geographical and Meteorological Factors 
Sindh's geographical characteristics play a pivotal role in its suitability for wind energy 
generation. The province's extensive coastal belt, stretching approximately 250 km, along with 
the presence of the Gharo-Jhimpir wind corridor spanning about 9700 sq. km [3], provide a 
naturally advantageous setting for large-scale wind power development [2,3]. The Gharo-Jhimpir 
corridor, in particular, is recognized for its consistently high wind speeds, averaging between 5 
to 12 m/s [3]. The relatively flat terrain and proximity to the coast further enhance the feasibility 
and economic viability of establishing and operating wind farms in this region. 
Meteorological conditions in Sindh are also highly favorable for wind energy production. The 
province experiences sufficient average wind speeds, for example, recording averages of 9.7 m/s 
during summer, 7.6 m/s in autumn, 7.4 m/s in spring, and 4.8 m/s in winter. The summer and 
autumn seasons, which coincide with Pakistan's peak electricity demand, exhibit the highest 
wind speeds. However, a concerning trend of decreasing wind speeds has been observed in some 
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areas, such as Thatta, since 2009, which could potentially impact the long-term sustainability and 
efficiency of wind power projects [17]. Prevailing wind directions are largely influenced by the 
southwest monsoon system which brings strong winds over Pakistan, particularly, benefiting the 
Sindh region [3]. 
Data from the Pakistan Meteorological Department (PMD) plays a crucial role in monitoring and 
analyzing these wind patterns [2,17]. The estimated potential for wind energy in Sindh is 
substantial. Studies and reports indicate a gross potential of approximately 43.8 GW, with about 
11 GW considered usable [3]. Other estimates suggest an economically viable potential of 11 GW 
in the Jhimpir-Keti Bandar wind corridor alone, with older studies even estimating a technically 
exploitable potential of up to 50 GW. A World Bank study conducted in 2021 projected that Sindh 
could accommodate 10,035 MW of renewable energy by 2030, considering various constraints 
[8]. 
Challenges and Barriers to Wind Energy Development in Sindh 
Despite the significant potential and progress in wind energy development in Sindh, several 
challenges and barriers hinder the sector from reaching its full capacity. Infrastructure limitations 
pose a significant obstacle, particularly the inadequacy of transmission lines and grid capacity to 
efficiently evacuate the generated wind power [3,4,12]. The rapid increase in power generation 
in the southern region, including wind energy has outpaced the development of the transmission 
network, leading to congestion and curtailment of wind power projects [12]. This results in 
underutilization of installed capacity and financial losses for wind power producers. 
Policy and regulatory barriers also impede the smooth development of wind energy projects in 
Sindh. Inconsistent government policies, frequent changes in regulations, and delays in obtaining 
necessary approvals and tariff notifications create uncertainty for investors and slow down 
project implementation [2,3,4,12]. The lack of a consistent and supportive policy framework can 
deter investment and hinder the long-term growth of the wind energy sector. 
HAR-RV model in wind energy forecasting 
HAR-RV models represent a class of autoregressive models specifically designed to capture the 
persistence of volatility observed in financial time series, based on the idea of heterogeneous 
market participants operating on different time scales [22]. These models are typically 
constructed using realized volatility measures calculated over various time horizons, such as 
daily, weekly, and monthly.  In the context of wind energy forecasting, HAR-RV models have been 
adapted to predict wind speed and power, considering the multi-scale nature of wind dynamics 
influenced by factors operating at different temporal frequencies. Research has explored several 
methodologies employing HAR-RV models for wind energy forecasting. Some studies directly 
apply HAR-RV models to wind speed or power time series to capture the inherent autoregressive 
structure and the impact of past realizations on future values. The findings from these studies 
suggest that HAR-RV models can be effective in predicting wind energy. For instance, a study 
introducing the HAR-RV model for wind speed forecasting found that it outperformed both the 
classical ARIMA model and a multi-layer perception ANN model in terms of RMSE, MAE, and 
mean absolute percentage error MAPE.  This indicates that the HAR model was better at 
capturing wind speed characteristics such as its asymmetric (non-Gaussian) distribution, non-
stationary time series profile, and chaotic dynamics compared to conventional models [9]. In 
some contexts, HAR models have been shown to effectively capture the long-memory features 
present in wind data [14]. 
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ARFIMA models in wind energy forecasting 
ARFIMA models represent a significant extension of the traditional ARIMA framework [13], 
allowing for the differencing parameter to take fractional values. This key feature enables 
ARFIMA models to effectively capture long-memory behavior in time series data [7], a 
characteristic often observed in wind speed and power fluctuations. The fractional differencing 
parameter, denoted as 'd', plays a crucial role in modeling these long-range dependencies, where 
past values of the time series can have a persistent, albeit slowly decaying, influence on current 
and future values. ARFIMA models are particularly suitable for time series that exhibit slow-
decaying autocorrelation functions, indicating the presence of long memory [21]. In the realm of 
wind energy forecasting, ARFIMA models have been applied to predict both wind speed and 
power across various forecasting horizons. 

Materials and methods 
Data collection and description 
Data for this study were collected from Jhimpir, a key site in southern Sindh, Pakistan, renowned 
for its consistent wind speeds and favourable atmospheric conditions [12]. The data spans from 
January 2019 to 2024, with observations recorded every 10 minutes. This high-frequency 
sampling provides a detailed time series that captures both intra-day fluctuations and seasonal 
trends as well. Each 10-minute observation includes six key meteorological variables: 1). Wind 
speed at 30 meters, reflecting near-surface conditions, 2). Wind speed at 80 meters, capturing 
higher-altitude profiles, 3). Temperature, which influences air density and atmospheric stability, 
4). Wind direction showing the directional angle of the wind’s origin, 5). Relative humidity which 
shows the percentage of moisture in the air, affecting sensor accuracy, and finally 6). Pressure of 
broader weather systems. 
Quality control was ensured through sensor calibration, timestamp verification, and pre-analysis 
procedures (e.g., missing value imputation and outlier detection), ensuring the dataset’s 
reliability for subsequent modelling. All analyses and visualizations were performed using the R 
programming language. Different packages in R were used for detailed analysis including 
estimation and forecasting from the employed models.  
Methodology 
3.2.1 Data pre-processing 
Prior to modelling, the high-frequency time series for each variable (wind speeds at two heights, 
temperature, wind direction, relative humidity, and pressure) were subjected to extensive pre-
processing to ensure data quality and compatibility. Missing observations were imputed using 
linear interpolation, and extreme outliers were identified through robust statistical methods and 
adjusted accordingly.  
3.2.2 Realized variances 
To capture intra-day volatility in the high-frequency meteorological data set, realized variances 
(RV) were calculated for each of the six observed variables using a block-based approach. The 
raw 10-minute interval data were partitioned into non-overlapping blocks, each consisting of six 
consecutive observations, thereby representing one-hour intervals. Within each block, first-
order differences between successive observations are computed to quantify short-term 
fluctuations. For a given meteorological variable Xt, the intra-block realized variances are 
calculated as: 
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Δ𝑋𝑡,𝑘,𝑗 = 𝑋𝑡,𝑘,𝑗 − 𝑋𝑡,𝑘,𝑗−1,  𝑗 = 1,… ,6 

 
The realized variance for day t was then obtained by summing the squared intra-block realized 
variances over all N blocks. 

𝑅𝑉𝑡 =∑𝑟𝑡,𝑗
2

6

𝑗=1

 

This process was applied independently to all the variables, producing six distinct realized 
variance series. By aggregating high-frequency differences in this manner, the procedure 
effectively filtered out transient noise while preserving the underlying variability structure of 
each variable. 
3.2.3 ARFIMA model 
To model the long-range dependence observed in the realized variability series, the ARFIMA 
model was employed. The ARFIMA model allows for fractional differencing to capture persistent 
dependencies in the data. In its simplified form, where short-memory components were set to 

zero (i.e., 0 qp ), the model is expressed as: 
 

ϕ(𝐵)(1 − 𝐵)𝑑𝑋𝑡 = θ(𝐵)ε𝑡 
 
ϕ(𝐵) = 1 − ϕ1𝐵 − ϕ2𝐵

2 −⋯− ϕ𝑝𝐵
𝑝 and θ(𝐵) = 1 + θ1𝐵 + θ2𝐵

2 +⋯+ θ𝑞𝐵
𝑞 are the 

autoregressive and moving average lag polynomials, respectively, 𝐵 is the backshift operator, d 
is the fractional differencing parameter estimated from the data, 𝑋𝑡 is the time series at time t, 
and finally 𝜀𝑡 is a stochastic term. The fractional differencing operator (1−B)d(1-B)d is 
implemented via a binomial expansion, thereby enabling a parsimonious representation of the 
long-memory behaviour in the series. 
3.2.4 HAR‐RV model 
Originally developed in financial econometrics by [5], HAR‐RV for realized variance has proven 
highly effective at capturing the long‐memory and multi‐scale characteristics of high‐frequency 
time series data. Although its initial application was in forecasting financial market volatility, the 
model’s straightforward structure and intuitive decomposition of variability render it equally 
promising for meteorological data analysis—such as for wind speed, temperature, relative 
humidity, and atmospheric pressure. 
In a meteorological context, the realized variance RVt is computed from high‐frequency 
observations (e.g., 10‐minute measurements) by aggregating data into non‐overlapping blocks 
(for instance, six consecutive observations to represent one hour). For each meteorological 
variable, the intra‐day variability is estimated as the sum of squared differences between 
successive observations, effectively filtering out micro‐scale noise while preserving meaningful 
variability. The HAR‐RV model then decomposes the daily realized variance into components that 
capture different temporal horizons: 
 

𝑅𝑉𝑡 = β0 + β1𝑅𝑉𝑡−1
(𝑑) + β2𝑅𝑉𝑡−1

(𝑤) + β3𝑅𝑉𝑡−1
(𝑚)

+ ε𝑡 
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Where 𝑅𝑉𝑡realized volatility (RV) at time t, 𝑅𝑉𝑡−1
(𝑑) is yesterday’s realized volatility, 𝑅𝑉𝑡−1

(𝑤) is the 

average realized volatility over the last week, 𝑅𝑉𝑡−1
(𝑚)

 showing average realized volatility over the 
last month, and ε𝑡  is the error term. The HAR model’s additive structure is designed to reflect 
the impact of various market participants who operate on different time scales, thereby 
capturing both short-term shocks and long-term persistence in variability. 
3.2.5 Model estimation and order selection 
In this study, both the ARFIMA and HAR models were estimated at various lag values (orders) to 
determine the optimal model specification for the forecasting purpose. For the ARFIMA model, 
different combinations of autoregressive (AR) and moving average (MA) terms were considered 
to capture the temporal dependencies and long-range dependencies inherent in the data. 
Similarly, for the HAR model, various lag structures such as daily, weekly, and monthly were 
evaluated to account for multi-scale dependencies in the data. The selection of the optimal 
model order is based on: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), 
Hannan-Quinn Criterion (HQC), and Log-likelihood (LL) of the model. These criteria provide a 
comprehensive evaluation of model fit while penalizing model complexity to avoid over-fitting. 
This procedure is essential to ensure the robustness and reliability of the chosen model for 
subsequent forecasting tasks. 
3.2.5 Forecasting realized variances 
After selecting the two best models i.e., first from ARFIMA specifications and second from HAR-
RV specifications, the forecasts of realized variance were generated independently for all the 
variables used in this study.  To assess the forecasting performance of the proposed models, a 
rolling window forecasting strategy was adopted. In the present study, 50% of the dataset was 
initially used to fit the model (training data), and the remaining 50% was used to generate 
iterative one-step-ahead forecasts. Upon completion, the forecasted values were compared 
against the actual observations in the latter half of the dataset to evaluate forecasting accuracy. 
This approach ensures forecasts are made under conditions resembling real-time applications, 
thereby enhancing the practical relevance and reliability of the results. 
The accuracy of the out-of-sample forecasts in the time series context is evaluated using four 
standard error metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean 
Square Error (RMSE). These metrics provide complementary insights into the performance of 
forecasting models over time. MAE captures the average magnitude of one-step-ahead forecast 
errors without considering their direction, offering a clear measure of typical prediction 
accuracy. MSE amplifies the impact of larger forecast errors through squaring, making it useful 
for detecting models that occasionally produce substantial deviations. RMSE, being the square 
root of MSE, not only retains the scale of the original series but also highlights the presence of 
large errors, which is particularly relevant in time series with volatility. These metrics collectively 
support a rigorous and balanced assessment of model performance in capturing the temporal 
dynamics of the data. Let 𝑦𝑖̂ denote the forecasted value and 𝑦𝑖 the actual observed value at time 
i, for a total of n forecasts. The metrics are formally defined as: 

MSE =
1

𝑛
∑(𝑦𝑖̂ − 𝑦𝑖)

2

𝑛

𝑖=1
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RMSE = √
1

𝑛
∑(𝑦𝑖̂ − 𝑦𝑖)2
𝑛

𝑖=1

 

MAE =
1

𝑛
∑|𝑦𝑖̂ − 𝑦𝑖|

𝑛

𝑖=1

 

Results and discussion 
This section particularly focuses on the results obtained by employing the research methodology 
presented in the previous section. This section is divided into different sub-sections to avoid 
complexities and to provide better understandings of the results.  
Descriptive Statistics  
Table 1 shows the summary statistics of realized variances computed for all the variables under 
study. Wind speed 80 shows values ranging from a minimum of 0 m/s to a maximum of 429.40 
m/s. The mean wind speed is 3.41 m/s, and the variance is 80.37, indicating moderate variability. 
Wind speed 30 ranges from 0.000 m/s to 331.17 m/s, with a mean of 2.78 m/s and the variance 
is 39.88. Wind direction varies between 0.003° and 554.23°, with a mean of 90.98°. Temperature 
has a minimum of 0°C and a maximum of 290.55°C, with a very low mean of 0.55°C. The variance 
is 14.36, indicating low variability. Relative Humidity at 80m (%) ranges from 0.003% to 290.55%, 
with a mean of 9.86%. The variance is 524.58, indicating substantial variability. The skewness of 
5.69 and kurtosis of 44.17 suggest a highly skewed and leptokurtic distribution, possibly due to 
sensor errors or abnormal readings. Furthermore, pressure at 80m (mbar) ranges from 0.000 
mbar to 298.02 mbar with a mean of 0.50 mbar. The variance is 24.40, and the skewness of 29.76 
with kurtosis of 1291.62 reflects a severely distorted distribution. The skewness and kurtosis of 
all the variables show positive skewed and leptokurtic behavior. 
Table l   Descriptive statistics for several meteorological variables under study 
Variable Min Max Mean Variance Skewness Kurtosis 

Wind speed 80 0.000 429.395 3.412 80.369 20.944 672.724 

Wind speed 30 0.000 331.175 2.783 39.881 18.682 568.710 

Wind direction 0.003 554.231 90.976 13592.596 1.790 5.825 

Temperature 0.000 290.545 0.550 14.356 38.836 2151.202 

Relative Humidity 0.003 290.545 9.856 524.577 5.693 44.168 

Pressure 0.000 298.016 0.496 24.402 29.758 1291.623 

Time plots of variables 
The historical data of realized variance from 2019 to 2024 are plotted in Figure 1 which provides 
a clear visual evidence of time-varying volatility across all six meteorological variables. These 
plots for Wind speed (30 and 80) shows distinct periods of elevated variance, particularly during 
late 2019 and early 2020, with sporadic peaks continuing throughout the rest of the timeline. 
This pattern indicates bursts of high variability followed by relatively calmer periods. The Wind 
direction plot exhibits consistently high levels of realized variance across the entire time span, 
suggesting persistent and frequent fluctuations in direction. Temperature and Pressure both 
display significant spikes in realized variance concentrated around 2019–2020 with much lower 
and more stable variance observed from 2021 onward. This implies that these variables 
experienced more extreme variation during earlier periods, stabilizing in later years. The 
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Humidity plot shows a cyclical pattern, with high and frequent fluctuations in realized variance 
that appear to follow seasonal or meteorological cycles, along with occasional dips likely due to 
data gaps or reduced variability. The visual inspection confirms the presence of 
heteroskedasticity in all variables which was further confirmed through ACFs and PACFs and 
through Engle’s ARCH and McLeod-Li tests.   
ACFs (Autocorrelation Functions) & PACF (Partial Autocorrelation Functions) 
The analysis of the Autocorrelation Functions (hereinafter referred as ACFs) and Partial 
Autocorrelation Function (hereinafter referred as PACFs) for the realized variance series across 
multiple meteorological variables reveals consistent evidence of long memory and temporal 
dependence. Figure 2(a) showing wind speed at both 30m and 80m heights, the ACFs exhibit a 
slow, gradual decay with numerous significant lags extending over hundreds of observations, 
indicating strong persistence in volatility. The PACFs plots show several significant early lags, 
which diminish rapidly, suggesting the presence of short-term autoregressive effects 
contributing directly to the variance dynamics. The 80m height data demonstrates a slightly 
simpler short-term dependence structure compared to 30m, reflected by fewer and lower 
magnitude PACFs spikes. In Figure 2(b), the wind direction displays a similarly slow decay in the 
ACFs with persistent significant autocorrelations over a long lag range which has been identified 
as a characteristic of long memory processes. The PACFs indicate initial significant autoregressive 
components that taper off, further supporting the coexistence of short-term AR behaviour and 
long-term dependence.  
Similarly, temperature’s realized variance exhibits moderate long memory, with the ACFs 
decaying slower than expected under white noise assumptions. The PACFs show a few significant 
short-term lags, consistent with autoregressive influences coupled with persistent 

 
Figure 1 Time Plot of variables under study 
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variance effects. In Figure 2(c) pressure demonstrates slow ACFs decay with oscillatory patterns 
and periodic spikes, pointing to long memory combined with cyclical behaviour. The PACFs 
confirm a short-term AR component through significant initial lags, alongside persistent long-
range dependence. Likewise, relative humidity displays the strongest long memory features, as 
evidenced by an ACF that remains significantly positive well beyond 300 lags. The PACFs 
highlights pronounced short-term autoregressive effects at the earliest lags, followed by gradual 
decay, indicating a robust combination of short- and long-term dependence. 
Collectively, these findings underscore the importance of models that accommodate fractional 
integration and multi-scale persistence, such as ARFIMA and HAR-RV, to accurately capture the 
complex temporal dependence in realized variance for meteorological variables. The persistence 
patterns observed validates the incorporation of long memory structures in volatility modelling 
frameworks to improve forecasting and inference in high-frequency meteorological data. 

 
Figure 2(a) ACFs and PACFs of Wind Speed 30 and Wind Speed 80  

 
Figure 2(b) ACF and PACF of Wind Direction and Temperature 
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Figure 2(c) ACFs and PACFs of Pressure and Relative Humidity 
Testing ARCH effects (volatility clustering)  
Table 2 shows the results for the Engle’s ARCH and the McLeod-Li tests which have been used to 
check the presence of heteroskedasticity/ARCH effects (also known as volatility clustering). The 
results showed that the p-values of test statistics for both tests are very close to 0 for all variables, 
indicating a strong rejection of the null hypothesis of Homoskedasticity or No ARCH effects at 
lagged value (m) 50. This confirms that the realized variance series for each variable exhibits 
significant time-varying volatility and hence HAR-RV and ARFIMA models are used to capture this 
volatility clustering phenomenon. 
Table 2   Engle’s ARCH and McLeod-Li results for checking Heteroskedasticity 
Variable ARCH test P-value (m = 50) McLeod-Li test P-value (m = 50) 

Wind Speed80 0.000 0.000 

Wind Speed30 0.000 0.000 

Wind Direction78m 0.000 0.000 

Temperature 0.000 0.000 

Relative Humidity 0.000 0.000 

Pressure 0.000 0.000 

In-sample ARFIMA model selection  
To determine the most suitable ARFIMA(p,d,q) model for the time series data, an in-sample 
evaluation was performed using various combinations of autoregressive (p) and moving average 
(q) terms, specifically the orders (1,1), (1,2), (1,3), (2,1), and (2,2). The model selection was based 
on well-established statistical information criteria — Akaike Information Criterion (AIC), Bayesian 
Information Criterion (BIC), and Hannan–Quinn Criterion (HQC) as well as the maximized log-
likelihood (LL) function. Among the models estimated, ARFIMA (1,2) consistently yielded the 
minimum values for AIC, BIC, and HQ, and the maximum value of the log-likelihood function, 
indicating a better in-sample fit compared to the alternative specifications. These results suggest 
that ARFIMA (1, 2) captures the underlying temporal dependence and long-memory structure in 
the data more effectively than other competing models. 
In-sample HAR-RV model selection  



Vol. 04 No. 01. July-September 2025  Advance Social Science Archive Journal 
 
 
 

3281 | P a g e  
 
 
 
 

To capture the multi-scale dynamics of our hourly wind‐power output series, we estimated three 
Heterogeneous Autoregressive (HAR) models—each designed to reflect fluctuations over distinct 
horizons—and compared their in-sample performance using AIC, BIC, HQC, and maximized log-
likelihood. Because our data are recorded every hour, the three candidate lag structures 
correspond to meaningful meteorological and operational cycles: the first model, HAR(1, 5, 22), 
incorporates a one-hour term for very short-run gusts, a five-hour term approximating morning-
to-midday boundary-layer developments, and a 22-hour term capturing a complete diurnal 
cycle; the second, HAR(12, 84, 360), uses a twelve-hour lag to reflect half-day heating-cooling 
transitions, an 84-hour lag for synoptic patterns recurring roughly every three to four days, and 
a 360-hour lag for fortnightly shifts in wind regimes; and the third, HAR(24, 168, 720), blends a 
24-hour daily cycle, a 168-hour weekly synoptic cycle, and a 720-hour (≈30-days) component to 
account for slowly evolving seasonal or climatic influences. 
Among these estimated HAR models, the HAR (24, 168, 720) specification emerged clearly 
superior: it delivered the lowest values of AIC, BIC, and HQC while also achieving the highest log-
likelihood as shown in the Table l 5. This result confirms that wind-power variability is most 
effectively modelled by combining daily diurnal patterns (24 hr), recurring weekly weather 
systems (168 hr), and longer-term variations tied to monthly or seasonal shifts (720 hr). In 
practice, the 24-hour term captures the predictable day–night cycle of boundary‐layer winds; the 
weekly term reflects the passage of high‐ and low‐pressure systems that typically recur on a 
seven-day rhythm; and the monthly term approximates gradual changes in large‐scale 
atmospheric circulation and seasonal temperature gradients. By integrating these three scales, 
HAR (24, 168, and 720) balances parsimony with explanatory power, reproducing both the rapid 
intraday gustiness and the slow-decaying clustering of wind regimes without the need for a more 
complex fractional‐integration model. 
Table 3   Selection of suitable order for ARFIMA model based on different criteria 
Variable Order Log-Likelihood AIC BIC HQC 

Wind Speed80 (1,1) -155715.90 311439.81 311474.56 311450.76 

Wind Speed80    1,2) -155710.53 311433.08 311474.55 311449.51 

Wind Speed80 (1,3) -155712.36 311436.72 311488.85 311453.15 

Wind Speed80 (2,1) -155715.27 311440.54 311483.98 311454.23 

Wind Speed80 (2,2) -155710.55 311433.09 311485.22 311449.52 

Wind Speed30 (1,1) -140802.72 281613.44 281648.19 281624.39 

Wind Speed30 (1,2) -140795.35 281600.73 281644.17 281614.41 

Wind Speed30 (1,3) -140857.27 281726.54 281778.67 281742.97 

Wind Speed30 (2,1) -140796.29 281602.58 281646.02 281616.27 

Wind Speed30 (2,2) -140801.64 281615.28 281667.41 281631.71 

Wind Direction  (1,1) -535898.33 1071804.66 1071839.41 1071815.61 

Wind Direction  (1,2) -535882.3 1071776.60 1071822.04 1071794.29 

Wind Direction  (1,3) -535886.01 1071784.02 1071836.15 1071800.45 

Wind Direction  (2,1) -535885.86 1071781.72 1071825.16 1071795.41 

Wind Direction  (2,2) -535883.26 1071778.52 1071830.65 1071794.95 

Temperature (1,1) -113829.39 227666.78 227701.54 227677.74 

Temperature (1,2) -113731.64 227510.27 227555.71 227534.96 
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Temperature (1,3) -113777.33 227566.66 227618.79 227583.09 

Temperature (2,1) -113771.51 227553.02 227596.46 227566.71 

Temperature (2,2) -113756.62 227525.24 227577.37 227541.67 

Relative Humidity (1,1) -565394.13 1130796.26 1130831.01 1130807.22 

Relative Humidity (1,2) -565340.86 1130620.73 1130732.17 1130702.42 

Relative Humidity (1,3) -565341.59 1130695.19 1130747.32 1130711.62 

Relative Humidity (2,1) -565350.8 1130711.60 1130755.04 1130725.29 

Relative Humidity (2,2) -565343.46 1130698.92 1130751.05 1130715.35 

Pressure (1,1) -124006.31 248020.61 248055.36 248031.56 

Pressure (1,2) -123954.21 247920.44 247972.56 247936.87 

Pressure (1,3) -123954.22 247920.45 247972.57 247936.88 

Pressure (2,1) -123996.84 248003.68 248047.12 248017.37 

Pressure (2,2) -123961.58 247935.152 247987.28 247951.58 

Table 4   Selection of suitable lag order for HAR-RV model based on in-sample evaluation  
Variable Order LL AIC BIC HQC 

Wind Speed80 (1,5,22) -155815 311637.2 311671.9 311648.1 

Wind Speed30 (1,5,22) -140924 281855.9 281890.7 281866.9 

Wind Direction (1,5,22) -268943 537893.0 537927.8 537904.0 

Temperature (1,5,22) -119789 247585.0 247619.8 247596.0 

Relative Humidity (1,5,22) -197517 395041.6 395076.4 395052.6 

Pressure (1,5,22) -134200 268408.0 268442.7 268418.9 

Wind Speed80 (12,84,360) -156202 312412.9 312447.6 312423.8 

Wind Speed30 (12,84,360) -141064 282135.9 282170.6 282146.8 

Wind Direction (12,84,360) -268146 536300.2 536335.0 536311.2 

Temperature (12,84,360) -118718 237444.0 237478.7 237455.0 

Relative Humidity (12,84,360) -196783 393574.7 393609.4 393585.7 

Pressure (12,84,360) -129666 259339.2 259373.9 259350.1 

Wind Speed80 (24, 168, 720) -154993 309994.3 310029.0 310005.2 

Wind Speed30 (24, 168, 720) -139952 279912.7 279947.4 279923.7 

Wind Direction (24, 168, 720) -265831 531670.3 531705.0 531681.2 

Temperature (24, 168, 720) -118159 236326.2 236360.9 236337.1 

Relative Humidity (24, 168, 720) -194771 389549.8 389584.5 389560.7 

Pressure (24, 168, 720) -129356 258719.5 258754.1 258730.4 

Testing presence of ARCH effects in residuals from selected models 
In Table 5, the Engle’s ARCH and McLeod-Li tests were conducted to evaluate the presence of 
ARCH effects in the residuals resulting from the selected models i.e., ARFIMA and HAR-RV al 
lagged value (m) = 50. As all the p-values of the test-statistics are greater than the conventional 
level of significance (0.05) resulting the homoskedastic behaviour in residuals. 
 Table 5   Engle’s ARCH and McLeod-Li tests for residuals from ARFIMA HAR model 
Variables ARCH test (p-value, m = 50) McLeod-Li test (p-value, m = 50) 

Windspeed80 0.081 0.080 

Windspeed30 0.076 0.083 
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Direction78m 0.081 0.079 

Temperature 0.077 0.082 

Humidity 0.079 0.081 

Pressure 0.084 0.077 

Out-of-sample forecast evaluation 
In Table 6, the comparative analysis of the HAR and ARFIMA models is presented. Based on the 
most widely used error metrics such as MSE, RMSE and MAE which are used for out-of-sample 
forecast evaluation, the HAR model consistently outperforms the ARFIMA model in terms of 
prediction accuracy, as evidenced by lower error values across all metrics. Since wind direction 
is the most volatile variable so it has the largest value of all error metrics. The selected HAR-RV 
model will be used to forecast the realized variances of these series. 
Table 6  Out-of-sample forecast evaluation based on different error metrics  
Variables HAR-RV model ARFIMA model 

MSE RMSE MAE MSE RMSE MAE 

Wind Speed30 29.06 5.43 2.39 266.34 16.32 4.56 

Wind Speed 80 27.77 5.27 1.91 152.28 12.34 3.61 

Wind Direction 13211.74 114.94 83.72 69322.28 263.29 171.53 

Temperature 1.54 1.24 0.38 7.34 2.71 0.61 

Relative Humidity 403.21 20.08 9.27 1851.34 43.02 18.37 

Pressure 6.97 2.64 0.31 33.30 5.77 0.49 

4.8   Forecasting realized variances from selected model 
To achieve the last objective of the present study, the forecasts for the realized variances were 
generated using the HAR-RV selected based on in-sample evaluation. In Figure 5, the historical 
series for Direction78m is marked by considerable volatility, with a sharp peak observed just prior 
to the 72-hour forecast window. Following this peak, the series exhibits stabilized lower 
variability. The HAR model projects a relatively flat future trajectory, with tight confidence 
intervals. Statistically, the narrow-forecast bands indicate high predictive precision, suggesting 
that the model has effectively captured the underlying post-fluctuation behaviour of the 
direction series. Humidity displays notable historical volatility, characterized by several abrupt 
increases followed by a rapid decline. After this stabilization, the HAR model's 72-hour forecast 
indicates a steady trajectory with relatively narrow confidence intervals. The low forecast 
variance reflects high model confidence, attributable to the sudden reduction in variability 
observed immediately before the start of the forecast period. The historical series for Pressure 
remains relatively stable with minor fluctuations. The HAR model suggests a continuation of this 
stability over the 72-hour forecast horizon, with a slight upward tendency, accompanied by 
extremely narrow confidence intervals. Statistically, the tight prediction bands indicate a high 
degree of certainty, demonstrating that the model is highly effective in forecasting pressure due 
to the low intrinsic variability of the series. Temperature historically exhibits moderate 
fluctuations, characterized by peaks and subsequent declines. The 72-hour forecast by the HAR 
model projects a gradual upward trend.  
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Figure 5   Plot of observed and forecasted time series with 95% confidence intervals 
Initially, the confidence intervals are wider, indicating moderate forecast uncertainty; however, 
they progressively narrow across the forecast horizon. This behaviour suggests that forecast 
precision improves over time as the model increasingly adapts to the underlying stabilization in 
temperature dynamics. BothWindspeed30 and Windspeed80 demonstrate considerable 
historical variability with frequent sharp fluctuations. The HAR model forecasts stabilization in 
wind speeds over the 72-hour forecast horizon. However, compared to other variables, the 
confidence intervals for both series are relatively wider, reflecting higher forecast uncertainty. 
This increased variability is consistent with the inherently dynamic and turbulent nature of wind 
behaviour, highlighting the challenges in achieving precise wind speed predictions over the 
forecast period. 
Conclusion 
This study utilized high-frequency meteorological intra-day data from 2019 to 2024, comprising 
of six key variables namely Wind Speed 30m, Wind Speed 80m, Temperature, Wind Direction, 
Relative Humidity, and Pressure to forecast the realized variance using the ARFIMA and HAR-RV 
models. Initially, the realized variance was constructed from the original time series data. 
Subsequently, an exploratory analysis was conducted, which included line plots, the ACFs, and 
the PACFs of the realized variance. The results of this revealed clear evidence of long-memory 
behavior in the data, suggesting the presence of persistent autocorrelations over time. This 
empirical characteristic motivated the application of both ARFIMA and HAR-RV models, which 
are well-suited for capturing long-range dependencies and volatility dynamics in meteorological 
time series.Prior to model implementation, residual diagnostic tests were conducted on the 
realized variance series of the meteorological variables. Engle’s ARCH and McLeod-Li tests were 
used to assess the presence of conditional heteroskedasticity (also known as volatility clustering). 
Both tests returned p-values near to zero, confirming the presence of significant ARCH effects. 
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These diagnostic results underscore the appropriateness of volatility modeling techniques for 
the realized variance series, justifying the use of volatility-sensitive models such as ARFIMA and 
HAR-RV. To determine optimal model specifications, various specifications for these two models 
were evaluated using model selection criteria including Akaike Information Criterion (AIC), 
Bayesian Information Criterion (BIC), and Hannan-Quinn Criterion (HQC), alongside log-likelihood 
values and the best fitting model was selected based on these criteria. The ARFIMA model 
achieved its best performance with an order of (1,2), while the HAR model was most effective 
with lag structures of (24, 168, 720) hours, corresponding to daily, weekly, and monthly cycles—
important periodicities in atmospheric behaviour. Both models captured the residual dynamics 
effectively; particularly at nominal lag lengths (m = 50) while using intra-day data.. The HAR-RV 
model consistently outperformed the ARFIMA model across all error measures, demonstrating 
lower forecast errors and improved residual modelling. Finally, the HAR-RV model proved to be 
more effective in forecasting realized variance in meteorological data, especially under presence 
of long memory and volatility clustering, making it a valuable tool for wind power variability 
modeling and operational forecasting. The 72-hour-ahead forecasts further validated the HAR-
RV model’s robustness, showing high predictive precision for relatively stable variables such as 
pressure and wind direction, and moderate but improving accuracy for temperature. Despite 
wider confidence intervals for wind speeds, the model successfully captured the underlying 
stabilization trend. These forecasting interpretations highlight the HAR-RV model’s strong 
capability in adapting to diverse atmospheric dynamics, thereby supporting more informed and 
reliable decision-making in wind energy operations. 
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